Certain homological functors of 2 - generator p - groups of class 2

نویسندگان

  • Arturo Magidin
  • Robert Fitzgerald Morse
چکیده

Using a new classification of 2-generator p-groups of class 2, we compute various homological functors for these groups. These functors include the nonabelian tensor square, nonabelian exterior square and the Schur multiplier. We also determine which of these groups are capable and which are unicentral.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The behavior of homological dimensions

Let R be a commutative noetherian ring. We study the behavior of injectiveand at dimension of R-modules under the functors HomR(-,-) and -×R-.

متن کامل

Homological Algebra in the Category of Γ-modules

We study homological algebra in the abelian category Γ̃, whose objects are functors from finite pointed sets to vector spaces over Fp. The full calculation of Tor ∗ -groups between functors of degree not exceeding p is presented. We compare our calculations with known results on homology of symmetric groups, Steenrod algebra and functor homology computations in the abelian category F of functors...

متن کامل

nth-roots and n-centrality of finite 2-generator p-groups of nilpotency class 2

Here we consider all finite non-abelian 2-generator $p$-groups ($p$ an odd prime) of nilpotency class two and study the probability of having $n^{th}$-roots of them. Also we find integers $n$ for which, these groups are $n$-central.

متن کامل

Covers, Preenvelopes, and Purity

We show that if a class of modules is closed under pure quotients, then it is precovering if and only if it is covering, and this happens if and only if it is closed under direct sums. This is inspired by a dual result by Rada and Saorín. We also show that if a class of modules contains the ground ring and is closed under extensions, direct sums, pure submodules, and pure quotients, then it for...

متن کامل

Relative Homological Algebra via Truncations

To do homological algebra with unbounded chain complexes one needs to first find a way of constructing resolutions. Spaltenstein solved this problem for chain complexes of R-modules by truncating further and further to the left, resolving the pieces, and gluing back the partial resolutions. Our aim is to give a homotopy theoretical interpretation of this procedure, which may be extended to a re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010